Appendix C
Natural Resource Conservation Service
Soil Survey, March 2014
MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Soil Map Unit Polygons</th>
<th>Soil Map Unit Lines</th>
<th>Soil Map Unit Points</th>
</tr>
</thead>
</table>

Special Point Features

- Blowout
- Borrow Pit
- Clay Spot
- Closed Depression
- Gravel Pit
- Gravelly Spot
- Landfill
- Lava Flow
- Marsh or swamp
- Mine or Quarry
- Miscellaneous Water
- Perennial Water
- Rock Outcrop
- Saline Spot
- Sandy Spot
- Severely Eroded Spot
- Sinkhole
- Slide or Slip
- Sodic Spot

Soils

- Soils
- Very Stony Spot
- Wet Spot
- Other

Water Features

- Streams and Canals

Transportation

- Rails
- Interstate Highways
- US Routes
- Major Roads
- Local Roads

Background

- Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:31,700.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County, Texas (Main Part)

Survey Area Data: Version 9, Dec 16, 2013

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 1, 2001—Jan 18, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>Delnorte-Canutio association, hilly</td>
<td>379.7</td>
<td>69.8%</td>
</tr>
<tr>
<td>IG</td>
<td>Igneous rock land</td>
<td>115.4</td>
<td>21.2%</td>
</tr>
<tr>
<td>Mg</td>
<td>Made land, gila soil material</td>
<td>44.2</td>
<td>8.1%</td>
</tr>
<tr>
<td>W</td>
<td>Water</td>
<td>4.7</td>
<td>0.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>544.0</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

Report—Map Unit Description

El Paso County, Texas (Main Part)

DCD—Delnorte-Canutio association hilly

Map Unit Setting
- *Elevation*: 2,250 to 4,500 feet
- *Mean annual precipitation*: 4 to 13 inches
- *Mean annual air temperature*: 57 to 66 degrees F
- *Frost-free period*: 210 to 260 days

Map Unit Composition
- *Delnorte and similar soils*: 60 percent
Canutio and similar soils: 20 percent
Minor components: 20 percent

Description of Delnorte

Setting
Landform: Fan piedmonts
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Pleistocene-age gravelly alluvium

Properties and qualities
Slope: 3 to 30 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Capacity of the most limiting layer to transmit water
(Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 0.8 inches)

Interpretive groups
Farmland classification: Not prime farmland
Land capability (nonirrigated): 7s
Hydrologic Soil Group: D
Ecological site: Gravelly (Desert Shrub) (R042XY260TX)

Typical profile
0 to 6 inches: Very gravelly loam
6 to 10 inches: Very gravelly loam
10 to 30 inches: Cemented material
30 to 80 inches: Extremely gravelly fine sand

Description of Canutio

Setting
Landform: Hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Pleistocene-age gravelly alluvium

Properties and qualities
Slope: 3 to 30 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water capacity: Very low (about 2.7 inches)

Interpretive groups
Farmland classification: Not prime farmland
Land capability (nonirrigated): 7s
Hydrologic Soil Group: A
Ecological site: Gravelly Outwash (Desert Shrub) (R042XY261TX)

Typical profile
0 to 11 inches: Very gravelly sandy loam
11 to 45 inches: Very cobbly sandy loam

Minor Components
Unnamed, minor components
Percent of map unit: 20 percent

IG—Igneous rock land

Map Unit Setting
Elevation: 300 to 8,700 feet
Mean annual precipitation: 10 to 35 inches
Mean annual air temperature: 52 to 73 degrees F
Frost-free period: 120 to 320 days

Map Unit Composition
Rock outcrop, igneous: 100 percent

Description of Rock Outcrop, Igneous
Setting
Parent material: Igneous rock

Properties and qualities
Slope: 3 to 45 percent
Depth to restrictive feature: 0 to 2 inches to lithic bedrock
Capacity of the most limiting layer to transmit water
(Ksat): Moderately low to very high (0.06 to 19.98 in/hr)

Interpretive groups
Farmland classification: Not prime farmland
Land capability (nonirrigated): 8s
Hydrologic Soil Group: D

Typical profile
0 to 80 inches: Bedrock
Mg—Made land, gila soil material

Map Unit Setting

Elevation: 1,500 to 5,000 feet
Mean annual precipitation: 4 to 12 inches
Mean annual air temperature: 66 to 70 degrees F
Frost-free period: 200 to 275 days

Map Unit Composition

Gila and similar soils: 90 percent
Minor components: 10 percent

Description of Gila

Setting

Landform: Flood plains
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Holocene-age coarse-loamy alluvium

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water capacity: High (about 10.4 inches)

Interpretive groups

Farmland classification: Not prime farmland
Land capability classification (irrigated): 1
Land capability (nonirrigated): 7c
Hydrologic Soil Group: B
Ecological site: Loamy Bottomland (Desert Shrub) (R042XY267TX)

Typical profile

0 to 10 inches: Fine sandy loam
10 to 22 inches: Loam, silt loam
22 to 27 inches: Gravelly sandy loam
27 to 63 inches: Silt loam

Minor Components

Unnamed, minor components
Percent of map unit: 5 percent
Unnamed, hydric minor components

Percent of map unit: 5 percent

Landform: Depressions

W—Water

Map Unit Composition

Water: 100 percent

Data Source Information

Soil Survey Area: El Paso County, Texas (Main Part)
Survey Area Data: Version 9, Dec 16, 2013